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Isomerization mode defines the process of interconversion of one isomer into 
another. Several mechanisms are conceivable for degenerate rearrangements 
and, in general, lead to a distinctive network of relations between participating 
isomers. Here we consider selected modes which are complementary in the 
sense that if mode 1 transforms an isomer A into B, C, D etc., then mode 2 
transforms the same isomer A into X, Y, Z, etc., which includes all isomers 
not comprised by the first mode. Physico-chemical complementarity can be 
translated into mathematical complementarity of  associated chemical graphs. 
This allows us to use the tool of Graph Theory. One example of graph 
theoretical use is the theorem that graph G and its complement t~ have the 
same automorphism group (i.e., the same symmetry). We have shown that a 
close examination of a graph and its complement and their components allows 
us to recognize the automorphism group in some complex cases without 
resorting to canonical numbering or other involved procedures, and even 
allows us to determine isomorphism of different processes. 
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I. Introduction 

Graph Theory studies the combinatorial and topological content of relations and 
has an important advantage over usual algebraic approaches, in that it not only 
permits an analytical approach, but it also offers pictorial representation of 
frequently complex situations. Combinatorial complexity of many chemical trans- 
formations soon becomes overwhelming when the size of structures and valencies 
of atom increase. There are only two isomers for tetravalent carbon structure 
with asymmetric substitution (i.e. d and l isomers); there are 20 isomers for 
pentavalent trigonal bipyramidal structure XY5 if the ligands are distinguishable, 
and there are 30 isomers in case of hexavalent octahedral XY6 with six different 
ligands. Representation of isomerizations with graphs was suggested some 15 
years ago [1] and such a novel approach has been quickly recognized as an 
important advance for the study of rearrangements. Besides its obvious advantage 
of allowing visualization of rather complex relations, the introduced graphs of 
chemical transformations have lead to the recognition that apparently different 
chemical processes may have a same underlying mechanism. Thus the charge 
shift in CH3CH~, a topic of organic chemistry, from the graph theoretical 
perspectives is found to be equivalent to interconversion of trigonal bipyramidal 
complex XYs,  an inorganic chemistry topic. 

In this communication we will illustrate additional novel examples that allow 
one to recognize related processes. We will be interested here in determining the 
symmetry of selected graphs (or in graph theoretical terminology [2], determining 
the automorphism group of a graph). In particular, we will consider relations 
between a graph G and its complement (~, which is defined [3] as a graph with 
the same set of vertices and the connections only between those vertices which 
are not connected in G. (For the reader's convenience we have collected in the 
Appendix a glossary of graph theoretical terms used). In Fig. 1 we show a graph 
of a trigonal prism and its complement, a six-membered cycle. A graph G and 
its complement (3 have the same group [4]. This important theorem has some 
practical use, because one of the two graphs, G or G, may be simpler for analysis. 
For instance, all vertices in the six-membered cycle of Fig. 1 are obviously 
equivalent, therefore all six vertices of the trigonal prism are equivalent. While 
the former can be depicted so that equivalence is evident, this is not possible for 
a two dimensional projection of the latter; however, because the graph is simple, 
the equivalence of all vertices is easy to recognize. In more complex graphs (to 
be examined later) advantages of the above approach will be more clear. The 
significance of the complementarity of graphs for physico-chemical studies arises 
from the observation that selected isomerization modes are complementary [5]. 
For example, digonal twist in the octahedral complexes considered by Gielen [6] 
and Muetterties [7] is complementary to rhombic twist considered by Ray and 
Dutt [8]. Thus, two isomers connected by digonal twist are excluded in direct 
transformation in the rhombic twist and vice versa. The corresponding graphs 
for the two mechanisms, the digonal twist and the rhombic twist, are shown in 
Fig. 2. From the graphic representations, taken from Ref. [5], it is not apparent, 
without referring to vertex labels, that the graphs are related as a complementary 
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Fig. 1. Graph representing trigonal pyramid in two alternative pictorial forms and its complement, 
a six-membered cycle 

pair. Of  course, from one of the graphs, the other can be constructed, but if the 
other graph appears in another study and is not suspected to be related, we face 
the difficult task of recognizing the graph as a complement of some existing 
(familiar) graph. We will here, by considering the symmetry of graphs, direct 
ourselves to that task. 

2. lsomerization of octahedral complexes 

Recently we have considered the problem of isomerization of octahedral com- 
plexes via digonal twist mechanism, which produces graph G, at bottom in Fig. 2 
[9]. The symmetry of the graph G has previously been established as $6, on the 
basis of outer isomorphism of two- and six-digit labels [10], as well as from the 
fact that the graph represents a complement of L(Ks), the line graph of Ks, which 
can be readily verified once $6 is suspected as the automorphism group [1 l, 12]. 
The line graph L(G) of a simple graph G is the graph whose vertices are in 
one-one correspondence with the edges of G, two vertices of  L(G) being adjacent 
if and only if the corresponding edges of G are adjacent [3]. Furthermore, use 
of canonical labels [13] and orbits derived from the adjacency matrix [14] revealed 
cycle structure for permutations, and finally, canonical labels were used to list 
representative symmetry elements as selected permutations of  vertex labels [9]. 
However, from the fact that graph G is the complement of the graph representing 
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the rhombic twist mechanism, solving one problem constitutes the basis for the 
solution of the other. From the theorem that G and G have the same symmetry, 
we immediately conclude that the graph representing rhombic twist as a mechan- 
ism for isomerization of octahedral complexes also has the same symmetry, $6. 
But the graphs are different and the correspondence between arbitrary labels and 
symmetry permutations has to be established if representative elements are to be 
listed. On the other hand, we need not know the relationship between a new 
graph, (~, representing rhombic twist mode, and the old graph, G, or any other 
graph to which G could be related. We should therefore focus our attention on 
graph G and try to use its properties in order to detect its relation to other more 
familiar graphs. We will outline such a search for useful properties and will avoid 

Fig. 2. Graph representing isomerization of 
octahedral complexes with the digonal twist 
rearrangement mode (bottom) and graph 
representing isomerization of the same com- 
plexes under the rhombic trist mode (top), 
as shown by Balaban [5] 
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the use of canonical labels, which offer a general method but at the cost of a 
somewhat difficult search for canonical labels. Instead of canonical labels, we 
will examine various subgraphs and will see how they facilitate the determination 
of automorphism and isomorphism for selected graphs. 

Let's examine graph G of Fig. 2 more carefully. We find numerous triangles 
( s u b g r a p h s  K3) , tetrahedra (subgraphs K4) and even "four dimensional 
tetrahedra", simplexes Ks. One such K5 subgraph is shown in Fig. 3 with its 
vertices labeled as A, B, C, D, and E. Let's label the remainder of vertices with 
the same letters A-E following the rule: a vertex receives labels of those vertices 
in K5 subgraph to which it is connected. One finds that each of the remaining 
vertices has only two neighbors in Ks, hence the remaining ten vertices of the 
graph G will each receive a two letter symbol. Already this finding suggests a 
more symmetrical pitctorial representation of our graph G. We can draw K5 as 
a symmetrical pentagram (vertices at the periphery in Fig. 4) and place ten 
additional vertices inside K5 periphery to produce a regular polygon. For a better 
visibility alternative vertices have been slightly displaced towards the center of 
the figure. Since each line in K5 is defined by two vertices and can be associated 
with a pair of labels we see that the remainder of the graph is in fact the line 
graph of Ks, and the two components of t~,/(5 and L(Ks), are connected whenever 
a same label occurs. As the result we obtain a more symmetrical pictorial form 
of G shown in Fig. 4, showing as the apparent symmetry Dsh. This represents a 
relatively highly symmetrical image of the graph considered. Construction of 
alternative pictorial forms for graphs is important, because nontrivially related 
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DE 

BE 
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| 

Fig. 3. The graph representing the rhombic twist mechanism of Fig. 2 with one of its K 5 subgraphs 
emphasized (labels A-E). The remaining vertices received two labels depending on which of A-E 
vertices are their neighbors 



142 M. Randi6 

novel forms may reveal some new structural aspects of the processes described 
by a graph. This point has been illustrated by Dunitz and Prelog [15] for the 
Petersen graph, which depicts an isomerization mode of trigonal bipyramidal 
XY5 complexes. They drew attention to an alternative form for the graph based 
on a regular pentagonal pattern familiar in mathematical literature [16], and a 
novel tetrahedral form, in contrast to trigonal forms customary in chemistry. 
There are, however, no simple rules for construction of alternative forms for 
graphs; for the most part it is a trial and error approach. It is useful to know 
about the presence of Hamiltonian circuits, and in particular to know the sym- 
metry of the graph when considering alternative pictorial diagrams for a given 
graph. In addition, as just demonstrated, examination of highly symmetrical 
subgraphs, such as K5 in this case, can also facilitate the search for alternative 
graphical illustrations of the considered relations. 

3. Examination of selected subgraphs 

"The problem of finding alternative pictorial forms" for a graph involves, both 
the topological and the combinatorial components of graphs. The former is 
reflected in the search for sites of the vertices; the latter involves labeling of 
vertices and implied connections, which, even if vertices were placed in very 
symmetrical locations, need not produce a symmetrical pattern unless compatible 
labeling can be found. An exhaustive search for assignment of labels is out of 
question, once the sites for the vertices has been selected. Instead of taking a 
trial-and-error approach, we advocate here "an educated guess" approach. This 
is, in essence, a constrained trial-and-error scheme, and is more likely to be 
productive. The basis for our guesses are selected properties of graphs considered, 
in particular the presence of subgraphs that are already familiar from other 
studies. Such subgraphs may suggest in the first place how to select a particular 
geometrical pattern among many nontrivially related patterns for the vertices 
location. 

Let's examine graph (3, describing the digonal twist mode of octahedral com- 
plexes, of which G is the complement. In Fig. 5 we show a number of symmetrical 
subgraphs which one can identify within (3. The particular examples constitute 
disjoint subgraphs pairwise (one pair is shown at the top of Fig. 5 with the 
partitioning of vertices into 8 +7; the other pair is shown at the bottom of the 
Fig. 5 with the corresponding partitioning 9 +6). Other such disjoint subgraphs 
are possible, like partitioning 12+3, in which one component is a triangle K3. 
The subgraph having nine vertices (Fig. 5), known as a simplex-polycorypha 
bounded by six pentahedra [17], appears in the description of a degenerate 
isomerization of XY3XY2XY3 molecules [18]. Thus interestingly, we find that 
apparently unrelated problems - the digonal twist in octahedral complexes and 
isomerization in propane-type molecules, under relative rotation of the XY3 end 
groups -have  something in common! 

The number of components and subgraphs in complex graphs itself is large and 
one should restrict attention to the subgraphs which constitute components (i.e. 
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Fig. 4. A more symmetrical representation of the graph of Fig. 3 

Fig. 5. Several more symmetrical sub- 
graphs of the graph representing digonal 
twist mode (graph of Fig. 3) 
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Table 1. Adjacency matrix for the subgraph G - K 5 
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AB AC A D  AE BC BD BE C D  CE D E  

0 AB 

AC 

AD 

AE 

BC 

BD 

BE 

CD 

CE 

DE 

1 1 1 1 1 1 0 0 0" 

0 1 1 1 0 0 1 1 0 

1 0 1 0 1 0 1 0 1 

1 1 0 0 0 1 0 1 1 

1 0 0 0 1 1 1 1 0 

0 1 0 1 0 1 1 0 1 

0 0 1 1 1 0 0 1 1 

1 1 0 1 1 0 0 1 1 

1 0 1 l 0 1 l 0 l 

0 l 1 0 I 1 l l 0 

partition the graph into disjoint set of vertices). When K5 is taken as one 
component of G, we obtain as the other component the subgraph shown in Fig. 
6, for which we used the same rule of labeling vertices as in the case of G. The 
adjacency matrix for the subgraph of Fig. 6 is shown in Table 1, the vertices have 
been listed in the alphabetical order. The adjacency matrix reveals an interesting 
connection with the Petersen graph, arising in the isomerization of trigonal 
bipyramidal complexes. If nondiagonal zeros in the adjacency matrix are replaced 
by ones, and ones are replaced by zeros, which is precisely the analytical equivalent 
to constructing the complement of a graph, we obtain the Petersen graph. 
Moreover, the derived form for the adjacency matrix of the Petersen graph is the 
form associated with the canonical numbering of vertices in the Petersen graph 
[19]. The rule for the canonical numbering to which we refer is the one based 
on the concept of the smallest binary code for a graph when its adjacency matrix 
is viewed as a single string of digits read from left to right and from top to bottom 
[20]. Hence, the subgraph of Fig. 6 is the complement of the Petersen graph (Fig. 
7). Again we find that two apparently unrelated processes - isomerizations in 

Fig. 6. One of  the components  of  the graph of  
Fig. 3 
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octahedral complexes via digonal twist and an exchange of  axial and equitorial 
roles for ligands in trigonal bipyramidal complexes - have a common mechanistic 
consequence. The processes are not equivalent; they happen to have related 
components. 

The coincidence btweeen the alphabetical labels of the subgraph in Fig. 6 and 
the canonical labels of the Petersen graph, its complement, is remarkable and 
intriguing, and is clearly not accidental. It illustrates how the particular canonical 
labeling emerges naturally in some of the components of  a graph. Alphabetical 
order is equivalent to a lexical ordering when letters are replaced by digits, so 
the interesting part of the coincidence consists in the relation between a lexical 
ordering of vertices, which have been labeled according to the rule of assigning 
double labels to G - / (5)  component of a graph G, depending on the connectivity 
with K5 component, and the canonical rule based on the smallest binary code 
for a graph. The coincidence shows a subtle relation of different labeling pro- 
cedures, but because both labeling schemes are strictly structural, the coincidence 
reflects upon the innate structural features of the graphs and components con- 
sidered. Because the complement of the subgraph of Fig. 6 is the Petersen graph 
with canonical labels representing the minimal binary code, the matrix of Table 
1 corresponds to maximal  binary code for the complement, i.e. the subgraph of 
Fig. 6. The alphabetical labels have some advantage too: observe that connected 
vertices have no common labels. For example, AB is connected to DE, CE, and 
CD. This is reminiscent of finding outer isomorphism in a graph having the 
symmetry $6 [10]. In the search for outer isomorphism in $6 one considers 
combination of two digits from six, so that connected vertices have no common 
digits. Here we use two out of five labels for one component of the graph and 
single labels for the other component. Thus, any permutation of the five labels 
in the component K5 will induce permutation of its ten edges, which are character- 
ized by a pair of labels and which lead to a 1 : 1 correspondence with the other 
subgraph. For example, the permutation (A, D, E, C)(B) induces a change of a 
double-letter label AB into BD and so on, and one obtains for the ten pairs the 
following permutation: (AB, BD, BE, BC)(AC, AD, DE, CE)(AE, CD). If  one 
adopts the canonical numering of vertices, the above corresponds to the permuta- 
tion: (1, 6, 7, 5)(2, 3, 10, 9)(4, 8), a symmetry element of the Petersen graph belong- 
ing to the class 2 42, discussed earlier in this series [19]. Hence, by finding that 
one can label the Petersen graph with two letter labels, so that adjacent vertices 
have no common letters, we can deduce that the Petersen graph has the same 
symmetry as Ks, the symmetry $5, and the result was obtained without use of 
canonical labels. 

4. Tetragonal-pyramidal complexes XY4 

For a given complex there are numerous distinctive isomerization modes involving 
different mechanisms, such as bond ruptures, rehybridization, charge migration, 
and change of geometry. Ruch and Haesselbarth [21], using double cosets, 
outlined a scheme for enumeration of different possible rearrangement modes in 
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various complexes. Klein and Cowley [22] considered a similar classification and 
labeling. Balasubramanian [23] in a series of papers considers formulation of 
methods to systematize and simplify associated group theory by using wreath 
product group, while Giinthard and coworkers [24] developed the isometric group 
approach. For recent reviews on the subject consult an article by Ruch and Klein 
[25] on double cosets in chemistry and physics and book by Ezra [26] on symmetry 
properties of molecules where a more extensive bibliography on the subject can 
be found. In the case of pentacoordinated tetragonal-pyramidal complex, as 

A 

discussed by Balaban [27], there are seven distinctive rearrangement modes of 
chemical interest. The mode in which the apex ligand ligand A is exchanged with 
one of the four basal ligands B, C, D, or E, has already been examined within 
this series: first when enatiomers were ignored, and more recently with differenti- 
ation of enatiomers [28]. In both cases, the resulting graph has the valency d = 4, 
and the number of vertices is l 5 and 30 respectively. The graphs have been found 
to have symmetries S~ and $5 x Ci with 120 and 240 permutation respectively. In 
addition there are modes of rearrangement of tetragonal-pyramidal complexes 
XY4 which lead to complex graphs, and are represented by permutation of ligands 
as (BCA) or (AD)(BC), which are modes 6 and 7 in the paper of Balaban [27]. 
If one again neglects the difference between the corresponding enatiomers, the 
corresponding graph, as pointed out by Balaban, is the same for both modes. 
The graph is shown in Fig. 8, as depicted by Balaban. It has 15 vertices, all of  
degree 8. If one would consider enatiomers separately the resulting graph would 
have 30 vertices, and the two graphs for the two modes would be different [27], 
i.e. nonisomorphic. The graph of Fig. 8 and the graph of Fig. 2, the complement 
(~, both have 15 vertices, each of degree 8, so that one wonders if they are 
somehow related, even though one is associated with a rearrangement of a 
pentacoordinated tetragonal bipyramid and the other is associated (as a comple- 
ment) with a rearrangement of octahedral complexes. The two diagrams do not 
overlap one another, so if the two graphs are isomorphic, the isomorphism has 
to be demonstrated. The graphs are sufficiently complex to suggest a use of a 
quick short-cut approach, e.g. an examination of selected invariants or subgraphs. 
Instead of considering canonical labels, which in this case are not easy to find, 
or trying the recently reported general scheme based on construction of the 
collection of characteristic equations [29], which are subsequently used in 
isomorphism tests (an application which requires use of a computer, in view of 
the size of the graph considered), we will show how one can demonstrate the 
isomorphism of the graphs of Fig. 2 and Fig. 8 in a few steps by recognizing 
useful subgraphs. Inspection of the graph of Fig. 8 again leads to Ks as its clique 
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Fig. 7. The Petersen graph labeled so as 
to match the labels of its complement 
shown in Fig. 6 
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[2] (i.e. its maximal complete subgraph). When one assigns labels A, B, C, D, E 
to the vertices of a K5 subgraph, one can proceed applying the two-letter labeling 
rule, and complete labeling of the graph. The process is unique, once vertices of 
a selected K5 clique have been labeled. Upon completion one can construct the 
)ist of  neighbors or write down the adjacency matrix and find that the result is 
the same as for the graph of Fig. 2. This completes the proof  that the two graphs 
are isomorphic. This illustrates how, even without the use of canonical labels, 
isomorphism of rather complex graphs can be established. Consequently, chemi- 
cally different structures, tetragonal-pyramidal and octahedral complexes for 
selected rearrangement modes, become mathematically equivalent. 

Can we determine the order of the automorphism group without resorting to use 
of canonical labels? Once we find K5 as a clique and show that double-letter 
labels can be assigned to the remaining ten vertices, we know that $5 is a subgroup 
of the sought symmetry group. If there is only one K5 subgraph one would 
conclude that the group of the larger graphs is also $5, but in our case there is 
more than one way of selecting a subgraph Ks. Hence, we need to find all possible 
K5 subgraphs, the task which need not be easy to perform. In our case, however, 
one can be quickly convinced that there are, in all, six K5 subgraphs: that is, five 
in addition to the subgraph labeled ABCDE. To see this, consider the vertex A 
and its connections: vertices AB, AC, AD, and AE. Together with A they form 
another K5 subgraph. Because in our graph all vertices are equivalent (this has 
to be so if vertices are to represent equivalent isomers!) what is true for vertex 
A will be true for B, C, D, and E. Formally we can recognize equivalence of all 
K5 subgraphs by using initially double (same) labels even for the K5 component, 
i.e. using AA, BB, CC, DD, and EE, instead of A, B, C, D, and E, respectively. 
Then the remaining five K5 subgraphs can be identified by erasure of a single 
same label. If we erase A in AB, AC, AD, AE, and AA we obtain A, B, C, D, E, 
which makes another relabeling of vertices possible, showing equivalence of all 
six K~ subgraphs. Because we have six K5 graphs, each having 5! permutations, 
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there are in all 6! permutations for the composite graph and the symmetry is $6, 
of order 720. 

5. On the canonical numbering 

If one desires to see individual permutations, how they exchange vertices, and 
which subgraphs are invariant under which operation, one has to list representa- 
tive elements of the group for each class. In order to do this, some numbering 
of vertices has to be adopted. One can paraphrase George Orwell [30] by saying: 
"All numberings are arbitrary, but some are more arbitrary than others". Number- 
ing that is based on some structural rule (as the two numberings mentioned in 
this work) is likely to be more useful in comparisons, ordering of graphs [31], 
fragment search, recognition of subgraphs, etc. Choosing a numbering for a 
structure is mathematically equivalent to selecting a coordinate system for a 
problem, and hence, as such does not enter the solution but can expedite solving 
the problem. In previous papers of this series [19, 28, 32] advantages of the 
canonical labels based on the smallest binary code for a graph have been 
illustrated. More recently the concept of the smallest binary code has been 
extended to cover unique coding of chemical reactions [33]. While we continue 
with the use of the smallest binary code, one should point to the fact that other 
canonical labelings are possible [34]. In particular, the recently discussed unique 
numbering and cataloguing of molecular structures by Hendrickson and Toczko 
[35] based on the maximal binary code is closely related, and is likely to be found 
computationally more similar than it may appear at first [36]. Search for canonical 
labels in general, is not an easy task, whether one uses minimal, maximal or some 
other rule for construction of the codes, because of the inherent n ! character of 
the problem of labeling of vertices. In the case of the graph of Fig. 8, the search 
for the minimal code labels can be facilitated by taking notice that the graph has 
subgraphs K5 and also that all vertices are equivalent. In Fig. 9 we illustrated 
the initial steps in the search for the canonical labels. The position for label 1 
was selected arbitrarily, and one of its nearest neighbors has been labeled as 15. 
Because all the vertices are eqivalent and there are four nearest neighbors, the 
selection of the sites for the labels 1 and 15 represents one out of 15 • = 120 
possibilities. Because, as mentioned previously, each vertex is common to two 
K5 subgraphs, placing label 15 removes equivalence of the two subgraphs. Hence, 
without further analysis one cannot assign position for label 14. At this point the 
search branches into exploration of assignments that follow by placing label 14 
within the same K5 subgraph with vertices 1 and 15, and within the other K5 
subgraph having no vertex 15. Let's first outline the continuation of the search 
for the smallest binary labels by assuming that label 14 is assigned to the other 
K5 subgraph of the vertex 1. Similar analysis and similar arguments would hold 
if we decided first to explore the possibilities of having label 14 assigned to a 
vertex of  K5 subgraph which already has label 15. The site for label 14 within 
the other K5 is predetermined so to form the triangle 1, 14, 15. In order to by-pass 
a long list of possibilities derived from permuting the remaining labels 13-9 
among the other vertices adjacent to vertex 1, we use a single unspecified label 
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Fig. 8. Graph representing an isomeri- 
zation of tetragonal-pyramidal com- 
plexes as given by Balaban [27] 
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a but restricting a to values 13, 12, 11, 10, 9, and 8. Label 2 is placed adjacent 
to both 15 and 14. In fact, this dictated the site of 14 as part  of  the 1, 14, 15 
triangle, because other possibilities would not produce at vertex 2 optimal neigh- 
bors: 14, 15. All the neighbors of  vertex 2 are labeled at this stage as b, with 
b = 7, 6, 5, 4. The only site without a label is now labeled as 3. Observe that label 
2 has three possible sites (there are three triangles with the side 15, 14), which 
brings the total number  of  possibilities so far to 120 x 3 --- 360. In the continuation 
of  the assignment one finds that label 4 has two alternative sites, giving for 
the order of  the group 360 • 2 = 720. All not yet specified positions have unique 
labels and these are (because they are unique!) not difficult to find. First locate 
those a sites that are adjacent to label 2 (there are two such sites) and give them 
the largest labels in set a: 13/12. The slash notation signifies that 13 and 12 are 
used as pair labels, but we have not yet decided which vertex receives label 13 
and which receives label 12. With the selection of  the site for label 4 one assigns 
labels 11/10 to a vertices adjacent to vertex 4 and consequently deduces for the 
remaining nonadjacent  sites of  vertex 4 having label a labels 9/8. At the same 
time one can assign labels 7/6 to b vertices adjacent to 4, the highest available 
labels restricted to b. This prescribes 5 for the remaining b vertex label. An 
inspection of the neighbors for the two 7/6 sites shows that they are not equivalent, 
i.e. one will result in a smaller binary code than the other. The neighbors for one 
of the two sites are (2, 3, 4, 5, 10, 11, 12, 13) even though we do not know definitive 
places for several labels in the list of  neighbors. The other site has neighbors 
(2, 3, 4, 5, 8, 9, 14, 15) and clearly corresponds to a larger binary code, because 
after an identical initial list it would give as neighbor to vertex 6 vertices with 
label 8 and 9 rather than 10 and 11 available in the first alternative. In a similar 
manner  one can select between two 9/8 sites and find that label 8 has, as neighbors, 
13 and 11 from the undecided pairs 13/12 and 11/10. In Fig. 10 we give the final 
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Table 2. Adjacency matrix for the graph G with the canonical numbering of vertices 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 

2 

3 
4 
5 

6 

7 

8 

9 

10 

11 
12 
13 
14 

15 

0 0 0 0 0 0 
%- -  ~---1---1---/---i- ~ o 

0 0 1 1 1 1 

1 1 0 0 1 1 0 

1 1 0 0 1 1 

1 1 1 1 0 0 0 

1 1 1 1 0 0 

1 1 1 1 1 1 1 

0 0 0 1 1 1 1 

1 1 1 0 0 0 0 

0 1 1 0 0 1 1 
1 0 0 1 1 0 0 

0 1 1 1 1 0 0 

1 0 0 0 0 1 1 
i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 1 0 1 0 1 

0 1 0 I 0 1 

0 1 1 0 1 0 

0 1 1 0 I 0 
1 0 0 1 1 0 

1 0 0 1 1 0 

1 0 1 0 0 1, 

1 0 1 0 0 1 

0 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 
0 1 0 1 1 0 1 0 

0 1 0 0 1 0 I 
0 1 1 0 0 1 1 0 

0 0 1 1 0 0 1 
1 1 0 1 0 0 1 

0 0 1 0 1 1 0 

resul t  a n d  the  a d j a c e n c y  ma t r ix  is s h o w n  in  Tab l e  2. Were  we p u r s u i n g  the  

a l t e rna t ive  a s s i g n m e n t  o f  label  14 we w o u l d  e n d  wi th  labels  tha t  w o u l d  c o r r e s p o n d  
to b i n a r y  code  wh i c h  is grea ter  t h a n  o n e  here  f o u n d .  

R e p r e s e n t a t i v e  p e r m u t a t i o n s ,  each b e l o n g i n g  to a d i f ferent  class,  are  l is ted in  
Tab l e  3. These  r ep resen ta t ive  p e r m u t a t i o n s  can  be  f o u n d  u s ing  k n o w n  e l emen t s  

for  the  c o m p l e m e n t  g r ap h  a n d  seek ing  the  c o r r e s p o n d e n c e  b e t w e e n  the  labels  in  

the  two graphs ,  r a the r  t h a n  u s i n g  the  c a n o n i c a l  labels  for  m a n y  copies  of  the  

g r aph  (all  b e i n g  c a n o n i c a l )  a n d  c o m p a r i n g  di f ferent  labels .  A n  e x a m i n a t i o n  o f  
the  a d j a c e n c y  ma t r ix  o f  the  g r a p h  o f  Fig.  8 a l lows  one  to f ind the  c o r r e s p o n d e n c e  

o f  labe ls  re la t ive ly  quickly .  O n e  first r ep laces  o f f -d i agona l  zeros  by  l ' s  a n d  searches  

for those  rows tha t  have  a c o m m o n  en t ry  in  one  o f  the  c o l u m n s .  F o r  the  g r aph  
o f  Fig. 8 we f ind tha t  rows  1 a n d  2 have  a c o m m o n  zero (or 1 i f  zeros  have  b e e n  

Table 3. Representative permutations (one of each of the 11 classes of $6) 

( 1 )(2)(3 )(4)(5 )(6)(7 )(8)(9)( 10)( 11 )( 12)( 13 )( 14)( 15 ) 
(1)(2)(3)(4)(5)(6)(7)(8, 9)(10, 11)(12, 13)(14, 15) 
(1)(2)(3)(4, 6)(5, 7)(8, 9)(10, 11)(12, 15)(13, 14) 
(1)(2, 6, 4)(3, 5, 7)(8)(9)(10, 12, 14)(11, 13, 15) 
(1)(2, 6, 4)(3, 5, 7)(8, 9)(10, 13, 14, 11, 12, 15) 
(1)(2)(3)(4, 5)(6, 7)(8, 10)(9, 11)(12, 15)(13, 14) 
(1)(2, 4, 3, 5)(6, 7)(8, 12, 15, 10)(9, 13, 14, 11) 
(1)(2,4,3,5)(6,7)(8, 13, 15, 11)(9, 12, 14, 10) 
(1,3,2)(4, 12, 11,5, 15,9)(6, 13,8,7, 14, 10) 
(1,3,2)(4, 13,9)(5, 14, 11)(6, 12, 10)(7, 15,8) 
(1,5, 15,9,2)(3,4, 10,6, 11)(7, 14, 12, 13,8) 

115 
1723 
13 2 6 

1334 
13226 

1326 
1243 
1243 
362 
35 
53 
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15 1 

0 0 

O O 

12 

1 

1 1 / 1 0 1 ~  9/8 

b 

12 3 

Fig. 9. The initial steps in the search for the canonical labels of the graph representing isomerization 
of XY4 complexes 

replaced) in co lumn 3; therefore, 1,2, 3 make a triangle. Similarly, 1, 4, 5 and 
1, 6, 7 make triangles. The remaining labels are then easy to locate. The correspon- 
dence between the labels o f  the graph of  Fig. 2 and the graph o f  Fig. 8 is then: 

Fig. 2: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Fig. 8: 1 15 10 14 11 13 12 2 6 7 3 8 4 9 5 
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15 

2 

I/.; 

6 

12 3 

8 

'9 

4 

'7 

5 

Fig. 10. The canonical labels for the graph considered 

6 7 

13 11 

Fig. 11. Highly symmetrical subgraphs of the 
graph of Fig. 8 discerned from the canonical 
labelings and associated adjacency matrix 
(Table 2) 
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With the above correspondence, one can "translate" an element of symmetry of 
one graph into the corresponding element for the other. 

Finally let's point to some additional properties of the canonical labeling of the 
graph in Fig. 8. Consider the submatrix involving rows and columns 2-7. The 
corresponding subgraph is shown in Fig. 11. When vertices are relabeled by using 
labels from 1-6, by decreasing each label value by one, the canonical labeling 
for the subgraph results. The rows and columns 8-16 define another subgraph, 
a highly symmetrical "tetrahedron-in-tetrahedron" (simplex polycorypha 
bounded by two tetrahedra and four pentahedra). This is one of the two types 
of simplex polycoryphas with six cells. The other has been shown in Fig. 5. 

6. Concluding remarks 

Graphical representation of the relations among isomers in various rearrangement 
modes has an advantage of mathematical abstraction and consequently different 
chemical systems and structures can be found to have an equivalent mathematical 
description. In addition, possibilities of different pictorial representation may 
make different aspects of a same problem more visible. While difficulties associ- 
ated with high symmetry of the problem of recognition of graphs are present, 
they can be resolved in a systematic way by use of canonical labels or alternative 
schemes for differentiating otherwise equivalent vertices. Finally, as discussed in 
this paper, even information on fragments, components and subgraphs can relate 
different graphs (i.e. different chemical transformations) or find some common 
feature in otherwise distinctive problems. Use of complementarity is one of the 
illustrations of a unified character in many processes. It not only helps to solve 
and recognize such cases but reflects the underlying reciprocity between a chemical 
phenomenon and a mathematical ideal. 

7. Appendix 

Glossary of graph theoretical terms 

Adjacency matrix: A matrix, the rows and columns of which correspond to the 
vertices of a graph and the elements of which are either ones or zeros depending 
on whether the corresponding vertices are linked or not respectively. 
Complementary graph: Graph t~ obtained by deleting the edges of a given graph 
G from a complete graph K~ having the same number of vertices. 
Complete graph Kn: Graph having n vertices in which every pair of vertices is 
connected. 
Degree of a vertex d: The number of edges with which the vertex is incident. 
Graph: (informally) mathematical object consisting of points (called vertices) 
and connections (called edges) linking some of these vertices. (formally): A 
mathematical system consisting of two sets V and E, together with a mapping 
G of E into V x V (Descartes product, the set of unordered pairs of elements 
of V). 
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Isomorphic graphs: A pair of graphs whose vertices and edges can be placed 
in 1-1 correspondence so that the adjacency relations (list of neighbors) are 
preserved. 
Regular graph: A graph in which all vertices are of a same degree. 
Automorphism: A one-one mapping S Of the vertex set of G onto itself with the 
property that S(vi) and S(vj) are adjacent if and only if vi and vj are. 
Clique: A maximal complete subgraph. 
Component of G: (as used here) A subset of vertices and all mutually connecting 
edges. This definition, as special case applies to disconnected subgraphs (frag- 
ments). 
Hamiltonian circuit: A closed path which passes exactly once through each vertex. 
Line Graph L(G): The graph whose vertices are in one-one correspondence with 
edges of (3, two vertices of L(G) being adjacent if and only if the corresponding 
edges of G are adjacent. 
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